Chemical elements
  Magnesium
    Isotopes
    Energy
    Preparation
    Physical Properties
    Chemical Properties
      Magnesium Hydride
      Magnesium Fluoride
      Magnesium Chloride
      Magnesium Bromide
      Magnesium Iodide
      Oxyhalogen Compounds of Magnesium
      Magnesium Chlorate
      Magnesium Bromate
      Magnesium Iodate
      Magnesium Perchlorate
      Magnesium Periodates
      Magnesium Permanganate
      Magnesium Suboxide
      Magnesium Oxide
      Magnesium Hydroxide
      Magnesium Peroxide
      Magnesium Sulphide
      Magnesium Hydrogen Sulphide
      Magnesium Sulphite
      Magnesium Double Dithionate
      Magnesium Sulphate
      Magnesium Hydrogen Sulphates
      Magnesium Sulphates
      Potassium Magnesium Sulphates
      Rubidium Magnesium Sulphate
      Ammonium Magnesium Sulphate
      Potassium Calcium Magnesium Sulphates
      Magnesium Double Sulphates
      Magnesium Thiosulphate
      Magnesium Selenide
      Magnesium Selenite
      Magnesium Selenate
      Magnesium Telluride
      Magnesium Tellurite
      Magnesium Tellurate
      Magnesium Chromite
      Magnesium Chromate
      Potassium Magnesium Chromate
      Rubidium Magnesium Chromate
      Ammonium Magnesium Chromate
      Magnesium Molybdate
      Magnesium Tungstates
      Magnesium Nitride
      Magnesium Azide
      Magnesium Nitrite
      Magnesium Nitrate
      Magnesium Double Nitrates
      Magnesium Phosphide
      Magnesium Hypophosphite
      Magnesium Phosphite
      Magnesium Hypophosphate
      Magnesium Orthophosphate
      Acid Magnesium Phosphates
      Magnesium Metaphosphate
      Magnesium Pyrophosphate
      Magnesium Double Phosphates
      Ammonium Magnesium Orthophosphate
      Magnesium Arsenide
      Magnesium Arsenites
      Magnesium Arsenates
      Magnesium Thioarsenic Salts
      Magnesium Vanadates
      Magnesium Niobates
      Magnesium Tantalates
      Magnesium Carbide
      Magnesium Cyanide
      Magnesium Thiocyanate
      Magnesium Carbonate
      Magnesium Basic Carbonates
      Magnesium Hydrogen Carbonate
      Magnesium Double Carbonates
      Northupite
      Magnesium Thiocarbonate
      Magnesium Silicide
      Magnesium Silicates
      Magnesium Boride
      Magnesium Borates
      Magnesium Aluminate
    PDB 101d-1atr
    PDB 1ats-1bup
    PDB 1bvw-1cp8
    PDB 1cqi-1d9d
    PDB 1d9z-1dxe
    PDB 1dxf-1ed9
    PDB 1edr-1f2u
    PDB 1f3f-1fmw
    PDB 1fnm-1g8n
    PDB 1g8t-1gtv
    PDB 1gua-1hnz
    PDB 1hpm-1i95
    PDB 1i96-1iv2
    PDB 1iv3-1jgy
    PDB 1jgz-1k01
    PDB 1k02-1kil
    PDB 1kiz-1l3p
    PDB 1l3r-1lvh
    PDB 1lvk-1mn9
    PDB 1mnd-1n33
    PDB 1n52-1ngg
    PDB 1ngj-1ntb
    PDB 1nu4-1o93
    PDB 1o9t-1ouo
    PDB 1ouq-1pg4
    PDB 1php-1q54
    PDB 1q5h-1qgx
    PDB 1qh1-1r4a
    PDB 1r4x-1rqy
    PDB 1rrf-1s9j
    PDB 1sa0-1svm
    PDB 1svs-1te6
    PDB 1tez-1u0c
    PDB 1u0h-1uhx
    PDB 1uik-1vc9
    PDB 1vcl-1vsd
    PDB 1vst-1wax
    PDB 1wb1-1wzn
    PDB 1x06-1xg4
    PDB 1xhf-1xqa
    PDB 1xr1-1y84
    PDB 1y8a-1yns
    PDB 1yq2-1z0a
    PDB 1z0d-1zc4
    PDB 1zca-1zvq
    PDB 1zvw-2a5l
    PDB 2a5y-2anr
    PDB 2anv-2b8q
    PDB 2b8r-2bku
    PDB 2bm0-2c18
    PDB 2c19-2cic
    PDB 2cie-2d0q
    PDB 2d1k-2dw6
    PDB 2dw7-2egh
    PDB 2eh3-2f6t
    PDB 2f6v-2fmh
    PDB 2fmk-2g3h
    PDB 2g3s-2gl5
    PDB 2gl6-2h7v
    PDB 2h7x-2hne
    PDB 2hny-2i34
    PDB 2i3d-2io7
    PDB 2io8-2j3e
    PDB 2j3q-2jg1
    PDB 2jg2-2nvu
    PDB 2nvx-2oem
    PDB 2ofw-2our
    PDB 2ous-2pcl
    PDB 2pda-2px3
    PDB 2pxi-2q5z
    PDB 2q66-2qlx
    PDB 2qm1-2qwy
    PDB 2qx0-2rdr
    PDB 2rds-2uxq
    PDB 2uxr-2vbn
    PDB 2vbu-2vk8
    PDB 2vkf-2w7x
    PDB 2w83-2wi3
    PDB 2wia-2wzd
    PDB 2wzg-2xcp
    PDB 2xdg-2y0s
    PDB 2y3p-2z4r
    PDB 2z4s-2zjy
    PDB 2zkj-301d
    PDB 302d-3a5k
    PDB 3a5l-3ak8
    PDB 3ak9-3bb3
    PDB 3bb4-3bsu
    PDB 3btx-3c95
    PDB 3c9h-3ckg
    PDB 3clc-3cxc
    PDB 3cxo-3der
    PDB 3des-3du3
    PDB 3du7-3e84
    PDB 3e8m-3eni
    PDB 3eno-3ezw
    PDB 3ezx-3fcs
    PDB 3fct-3fqr
    PDB 3fqt-3g3y
    PDB 3g45-3gj3
    PDB 3gj4-3gve
    PDB 3gvn-3hdz
    PDB 3hfw-3hrz
    PDB 3hs0-3hzt
    PDB 3hzv-3iaf
    PDB 3iak-3ilo
    PDB 3imd-3jvt
    PDB 3jvv-3ka6
    PDB 3ka8-3kkp
    PDB 3kkq-3kxi
    PDB 3kxo-3ldw
    PDB 3lee-3lwm
    PDB 3lwn-3mey
    PDB 3mf4-3n23
    PDB 3n2a-3nkv
    PDB 3nl3-3ocm
    PDB 3ocu-3oiu
    PDB 3oiv-3oye
    PDB 3oyf-3pu9
    PDB 3pwx-3rmj
    PDB 3ro8-3t3p
    PDB 3t5t-3ukd
    PDB 3umm-3v9w
    PDB 3v9x-412d
    PDB 421p-4aov
    PDB 4ap5-4dg1
    PDB 4dh1-4dug
    PDB 4dwd-4en4
    PDB 4en5-4fk1
    PDB 4fkx-8ici
    PDB 8ruc-9rub

Chemical Properties of Magnesium






Magnesium ribbon burns with a bright light in air to the oxide and nitride: Winkler says no nitride is formed unless inactive substances which absorb heat are present. The great brightness of this light makes magnesium useful in flashlights, signalling, and pyrotechny. Burning magnesium gives a continuous spectrum.

Heated magnesium decomposes carbon dioxide (the formation of magnesium carbide may interfere with the reaction), carbon monoxide (this has been denied), sulphur dioxide, hydrogen sulphide, nitrous oxide, nitric oxide, all oxides except those of the alkalies and alkaline earths, some sulphides, and combines directly with the halogens, sulphur, nitrogen, phosphorus, and other elements.

Magnesium does not tarnish in dry air, but in moist air becomes covered lightly with oxide. Distilled water acts on it very slowly, and though it has been suggested that perfectly pure water attacks magnesium until the action is stopped by a coating of oxide, there seems to be no action if dissolved gases are entirely absent. The heated metal reacts readily with steam -

Mg+H2O = MgO+H2.

Magnesium amalgam decomposes water violently, and many magnesium alloys act similarly.

In general, action occurs in systems containing magnesium, water, and an electrolyte. Powdered magnesium reacts with the water of crystallisation of many substances, and the metal decomposes water rapidly in the presence of a drop of platinic chloride or of a little palladious chloride. Magnesium reduces solutions of nitrates, nitrites, and chlorates. It liberates its equivalent of hydrogen from dilute hydrochloric or sulphuric acid; it also evolves hydrogen, more slowly and at very different rates,13 from solutions of many salts - including its own.

Getman concluded that the reaction

Mg+2H2O = Mg(OH)2+H2

is catalytically accelerated by dissolved potassium chloride and other dissolved salts: the reaction is equally rapid with impure and perfectly pure metal. In solutions of hydrolysed salts, the evolution of hydrogen is accelerated if the base is weak, and retarded if it is strong.

Magnesium, according to Getman, acts in four distinguishable ways on aqueous solutions of salts -

  1. Neutral salts function solely as catalysts, and the magnesium forms hydrogen and magnesium hydroxide with the water. A basic salt may result.
  2. When the base is weak, the magnesium reacts first with the acid from the hydrolysis and then with the solvent. In the latter reaction the saline constituents act as catalytic stimulants.
  3. When the acid is weak, the hydrogen-ion concentration is depressed, and the magnesium reacts very slightly, if at all, with the solvent.
  4. When the cation is less electro-positive than the magnesium, the metal of the salt is replaced by the latter. Since such salts usually have an acid reaction, the magnesium generally directly displaces the hydrogen of the acid as well.


Magnesium precipitates its equivalent of pure copper, gold, or platinum from solutions containing no other metals than the alkalies or alkaline earths. Many other metals alloy with the magnesium. Tellurium can be estimated by precipitating it with magnesium, and zinc is also quantitatively precipitated from its acetate in the presence of alkaline earth metals.

The formation of oxides or hydroxides of metals has been noted during their displacement from their salts by magnesium, and it has been suggested that the action of magnesium on salts primarily converts their metal into its oxide or hydroxide.

Nitric oxide, nitrous oxide, and nitrogen are evolved, according to Ac worth and Armstrong, when nitric acid acts upon magnesium. When the acid is mixed with an equal volume of water these gases correspond to 64.23 per cent, of the metal dissolved. They correspond to 4451 per cent, when the acid is mixed with 12 parts of water. Nitric oxide predominates. If some hydrochloric acid is present hydroxylamine is formed, but it decomposes rapidly. Ammonium nitrate is also produced during the action. Much hydrogen is also said to be evolved, and the proportion of ammonia increases with the concentration of the nitric acid till the latter reaches 40 per cent., and then decreases.

Alkaline hydroxides do not act on magnesium; sodium carbonate solution acts on it slightly, and borax solution with considerable vigour.

Concentrated sulphuric acid begins to attack magnesium at 215° C. with the evolution of sulphur dioxide and a trace of hydrogen sulphide. Sulphurous acid converts the metal into its sulphite.

Potassium dichromate inhibits the solution of magnesium in acetic acid: the addition of an alkali or of a magnesium salt of a strong acid destroys the " passivity."

The metal acts on methyl alcohol to form magnesium methoxide, and enters into many important reactions in organic chemistry.

A green unstable colloidal solution of magnesium has been prepared by the electrical method.


© Copyright 2008-2012 by atomistry.com